Deep Residual Learning for Image Recognition

jixiaohui 2018-01-10 11:15
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly re

Learning Transferable Architectures for Scalable Image Recognition

jixiaohui 2018-01-10 15:36
Developing neural network image classification models often requires significant architecture engineering. In this paper, we attempt to automate this engineering process by learning the model architec

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

辉仔 2018-01-10 10:49
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the trai

Dynamic Routing Between Capsules

dwSun 2018-02-06 16:16
A capsule is a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part. We use the length of the activity vector

Identity Mappings in Deep Residual Networks

jixiaohui 2018-01-10 12:10
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behin

用IQ测试题研究测量神经网络的抽象推理能力

人工智能头条 2018-07-13 14:03
今天人工智能头条也为大家介绍一下DeepMind的这项最新研究:测量神经网络的抽象推理能力。

吴恩达-神经网络和深度学习(第一周深度学习概论)

阿小庆 2018-06-29 20:09
学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

jixiaohui 2018-01-10 11:37
Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve ve

Fully Convolutional Networks for Semantic Segmentation

辉仔 2018-01-10 10:46
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-a

Rethinking the Inception Architecture for Computer Vision

辉仔 2018-01-10 11:10
Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yieldin