像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程

Azure-Sky 2018-06-21 09:20
Luminoth 实现:https://github.com/tryolabs/luminoth/tree/master/luminoth/models/fasterrcnn 在阅读本文之前,若想了解 R-CNN 网络家族的发展,可以参看机器之心的文章: 深度 | 用于图像分割的卷积神经网络:从R-CNN到Mark R-CNN 去年,我们决定深入了解 Faster R-CNN,阅读原始论文以及其中

深度学习时代的目标检测算法综述

Azure-Sky 2018-06-17 16:50
这或许是计算机视觉领域内最著名的问题。它主要指将一张图像归为某种类别。学术界最流行的一类数据集是ImageNet,由数以百万计已分好类的图像组成,(部分)用于年度ImageNet大规模视觉识别挑战比赛(ILSVRC)。近年来,分类模型已经超过了人类的表现,因此该问题基本算是一个已经解决的问题。图像分类领域有许多挑战,但是也有许多文章介绍已经解决了的,以及未解决的挑战。

深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD

Azure-Sky 2018-06-17 16:21
Faster R-CNN、R-FCN 和 SSD 是三种目前最优且应用最广泛的目标检测模型。其他流行的模型通常与这三者类似,都依赖于深度 CNN(如 ResNet、Inception 等)来进行网络初始化,且大部分遵循同样的 proposal/分类管道。本文介绍了深度学习目标检测的三种常见模型:Faster R-CNN、R-FCN 和 SSD。
关注微信公众号