OpenCV调用TesorFlow预训练模型

TinyMind 2018-06-12 15:12
关注文章

【转载自guyuealian的博客】 https://blog.csdn.net/guyuealian/article/details/80570120

      强大OpenCV从自OpenCV 3.1版以来,dnn模块一直是opencv_contrib库的一部分,在3.3版中,它被提到了主仓库中。新版OpenCV dnn模块目前支持Caffe、TensorFlow、Torch、PyTorch等深度学习框架。另外,新版本中使用预训练深度学习模型的API同时兼容C++和Python

    OpenCV 3.3开始就提供了读取TensoFlow模型的接口了,不过现在能支持的模型并不多。目前,我测试成功只有两个,分别是object_detection的“ssd_mobilenet_v1_coco_11_06_2017”和“ssd_inception_v2_coco_2017_11_17”预训练模型,其他模型报出各种各样的错误,反正我暂时还没有解决问题,各位神一样的网友若有新的进展,麻烦告知一声,哈哈~!

一、版本配置要求

  • 1. Windows 7 和 VS2015
  • 2. OpenCV3.3.1以上,本人使用的OpenCV 3.4.1,下载地址:https://github.com/opencv/opencv/releases 
  • 3.至于TensoFlow,鄙人只是想测试已经训练好的模型,那就可以不安装TensoFlow了,偷懒一下~!

二、模型下载和配置

1.   先用VS2015新建一个项目“opercv4tensorflow”,并在源文件目录下新建 一个“models”的文件夹,这个文件夹用于下载TensoFlow的模型。

2.   目前,只测试TensoFlow的object_detection模块的“ssd_mobilenet_v1_coco_11_06_2017”和“ssd_inception_v2_coco_2017_11_17”两个预训练模型,其他的自己看着办吧:

    http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz
    http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
    当然了,你可以自己训练模型,也可以下载更多的预训练模型,这个可以到TensoFlow下载,下载地址是:
    https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md 
 

    Tensorflow模型的graph结构可以保存为.pb文件或者.pbtxt文件,或者.meta文件,其中只有.pbtxt文件是可读的。在OpenCV中,每个模型.pb文件,原则上应有一个对应的文本图形定义的.pbtxt文件,当然也可能没有,在opencv_extra\testdata\dnn有些.pbtxt文件是可以对应找到,这个要看opencv会不会提供,当然,你厉害的话,可以自己按照网络定义结构写一份。

    下表给出,目前我在object_detection模块中测试成功.pb文件与.pbtxt文件的对应关系,更多的模型,还请网友下方留言,支援一下,我会及时更新博客内容

序号 .pb文件:预训练模型 .pbtxt文件 备注
1 ssd_mobilenet_v1_coco_11_06_2017 ssd_mobilenet_v1_coco.pbtxt  
2 ssd_inception_v2_coco_2017_11_17 ssd_inception_v2_coco_2017_11_17.pbtxt  
3      
4      
       

3. 上面下载的TensoFlow模型解压后,里含有重要的二进制protobuf描述的.pb文件,我们还需要对应的protobuf格式文本图形定义的.pbtxt文件,这个就需要到opencv_extra\testdata\dnn下载了

   opencv_extra下载地址:https://github.com/opencv/opencv_extra/tree/master/testdata/dnn

   把dnn文件夹中的“ssd_inception_v2_coco_2017_11_17.pbtxt”和“ssd_mobilenet_v1_coco.pbtxt”也下载复制到项目的models中吧



三、使用opencv读取网络模型


    一切准备妥当了,下面就使用opencv C++(也可以是python的)实现读取TensoFlow训练好的网络模型。opencv dnn为我们提供TensoFlow的接口:readNetFromTensorflow,当然也有支持Caffe的接口:readNetFromCaffe。我们这里只考虑TensoFlow的模型,readNetFromTensorflow函数有多个重载函数:

    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
      * @param model  path to the .pb file with binary protobuf description of the network architecture
      * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
      *               Resulting Net object is built by text graph using weights from a binary one that
      *               let us make it more flexible.
      * @returns Net object.
      */
    CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());

    完整的测试代码:

#include<opencv2\opencv.hpp>
#include<opencv2\dnn.hpp>
#include <iostream>

using namespace std;
using namespace cv;

const size_t inWidth = 300;
const size_t inHeight = 300;
const float WHRatio = inWidth / (float)inHeight;
const char* classNames[] = { "background","face" };//这个需要根据训练的类别定义

int main() {

	Mat frame = cv::imread("2.jpg");
	Size frame_size = frame.size();


	String weights = "models\\ssd_inception_v2_coco_2017_11_17\\frozen_inference_graph.pb";
	String prototxt = "models\\ssd_inception_v2_coco_2017_11_17.pbtxt";
	dnn::Net net = cv::dnn::readNetFromTensorflow(weights, prototxt);

	Size cropSize;
	if (frame_size.width / (float)frame_size.height > WHRatio)
	{
		cropSize = Size(static_cast<int>(frame_size.height * WHRatio),
			frame_size.height);
	}
	else
	{
		cropSize = Size(frame_size.width,
			static_cast<int>(frame_size.width / WHRatio));
	}

	Rect crop(Point((frame_size.width - cropSize.width) / 2,
		(frame_size.height - cropSize.height) / 2),
		cropSize);


	cv::Mat blob = cv::dnn::blobFromImage(frame, 1. / 255, Size(300, 300));
	//cout << "blob size: " << blob.size << endl;

	net.setInput(blob);
	Mat output = net.forward();
	//cout << "output size: " << output.size << endl;

	Mat detectionMat(output.size[2], output.size[3], CV_32F, output.ptr<float>());

	frame = frame(crop);
	float confidenceThreshold = 0.20;
	for (int i = 0; i < detectionMat.rows; i++)
	{
		float confidence = detectionMat.at<float>(i, 2);

		if (confidence > confidenceThreshold)
		{
			size_t objectClass = (size_t)(detectionMat.at<float>(i, 1));

			int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
			int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
			int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
			int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);

			ostringstream ss;
			ss << confidence;
			String conf(ss.str());

			Rect object((int)xLeftBottom, (int)yLeftBottom,
				(int)(xRightTop - xLeftBottom),
				(int)(yRightTop - yLeftBottom));

			rectangle(frame, object, Scalar(0, 255, 0), 2);
			String label = String(classNames[objectClass]) + ": " + conf;
			int baseLine = 0;
			Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
			rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
				Size(labelSize.width, labelSize.height + baseLine)),
				Scalar(0, 255, 0), CV_FILLED);
			putText(frame, label, Point(xLeftBottom, yLeftBottom),
				FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
		}
	}
	imshow("image", frame);
	waitKey(0);
	return 0;
}

运行结果:


四、常见的错误和坑

  • OpenCV(3.4.1) Error: Unspecified error (FAILED: fs.is_open(). Can't open "models\ssd_inception_v2_coco_2017_1117\frozen_inference_graph.pb") in cv::dnn::ReadProtoFromBinaryFile, file C:\build\master_winpack-build-win64-vc14\opencv\modules\dnn\src\caffe\caffe_io.cpp, line 1126

      出现这个问题,很大的原因是你的模型路径,错鸟!!导致不能打开

  • OpenCV(3.4.1) Error: Unspecified error (Const input blob for weights not found) in cv::dnn::experimental_dnn_v4::`anonymous-namespace'::TFImporter::getConstBlob, file C:\build\master_winpack-build-win64-vc14\opencv\modules\dnn\src\tensorflow\tf_importer.cpp, line 579

     出现这个问题,可能是你的.pb模型文件与.pbtxt文件不对应

五、参考资料:

https://blog.csdn.net/xingchenbingbuyu/article/details/78416887


文章被以下专辑收录
图像
{{panelTitle}}
支持Markdown和数学公式,公式格式:\\(...\\)或\\[...\\]

还没有内容

关注微信公众号