Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

辉仔 2018-01-10 11:09
关注文章
提交模型

In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.

数据集:ImageNet、VOC

原作者:Alec Radford, Luke Metz, Soumith Chintala

发布时间:2015-11-19

论文链接

{{panelTitle}}
支持Markdown和数学公式,公式格式:\\(...\\)或\\[...\\]

还没有内容

关注微信公众号