Mask R-CNN

dwSun 2018-01-15 20:45
关注文章
提交模型

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

数据集:MS-COCO

原作者:Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick

发布时间:2017-04-05

论文链接

{{panelTitle}}
支持Markdown和数学公式,公式格式:\\(...\\)或\\[...\\]

还没有内容

关注微信公众号